3 Quantum Parallelism

Quantum Parallelism is a useful feature for many quantumalgorithms Quantum parallelism allows quantum computers to evaluate a function fix) for many different ^x simultaneously It sounds perfect Here we'll first show how quantum parallelism works, and some of its limitations

Suppose $f(x): \{0, 1\} \mapsto \{0, 1\}$ os a function taking in one bit and output one bit. We also have the following quantum circuit that takes in two inputs $14 > 10 > 147$ see 142 $E = \frac{1}{2}$

If we let $y = 10$, then $y \oplus f(x) = f(x)$. To evaluate fine) for X = 0 & 1, we can feed in $\alpha = |0\rangle$ and $\alpha = |1\rangle$ respectively to the circuit and measure the results. We can feed in another state $\frac{(0) + (4)}{\sqrt{2}}$, so the ispute $|42 = \frac{1}{\sqrt{2}} (10 > +112) |0>$ $= \frac{1}{\sqrt{2}} (|00\rangle + |10\rangle)$ the output 145 is $|y>=\frac{1}{\sqrt{2}}|p,f(p)+|1,f(1)>$ inputs outputs

 $\begin{array}{ccc} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{array}$ The output $14'$ contains the information of both fco. and $f(1)$. The idea of using $\frac{(0) + (1)}{\sqrt{2}}$ can be easily generalized to multiple bits since $\frac{(105+117)}{\sqrt{2}}$ $\frac{(105+117)}{\sqrt{2}}$ = $\frac{1}{2}$ $(1005+1015+11105+1117)$ and <u>10>+11</u>) can also be generated easily using Hadamard gates We use H 2 + to denote tus H gates warking parallelly The result of performing the H transformation on R gabits initially in all $|0\rangle$ state is $2^{-\frac{1}{2}} \sum_{X} |x\rangle$ and $X \in \{0, 1\}^{\mathbb{Z}}$ The corresponding circuit is $\overline{}$ $1000-0$ \leftarrow $11 - 2$ \times \propto $\lfloor \underline{H} \rfloor$

H So far, we express the idea of how to use super -position to do parallel computing, a problem we haven't addressed is how to get the result respectively? Since if we measure the output, we will only have one

n

random result. No norry. the can play some tricks on the input y. Deutsch's Algorithm Deutsch's algorithm combines quantum parallelism with guantum interference. Now, let's see how the algorithm nonks. $M \rightarrow M$ $|0\rangle \rightarrow |H| \rightarrow \propto \sim |$ $11>7$ $\sqrt{11}$ $\frac{1}{9}$ 30 frs- $\begin{array}{c}\n\uparrow \\
\uparrow \downarrow \\
\downarrow \downarrow \downarrow \\
\downarrow \downarrow \downarrow\n\end{array}$ $|Y_{o}\rangle |Y_{i}\rangle$ For the circuit showing above, inputs are los & 12> $|\psi_{\circ}\rangle = |\circ\rangle|1\rangle$ S_{0} After the Hadamard gates, $14.> = \frac{107+12}{\sqrt{2}} \cdot \frac{10>-12}{\sqrt{2}} = \frac{1}{2} (100> -101> +110> -111>)$ $|Y_2> = \frac{1}{2} |0\rangle (|00f(0)\rangle) - |0\rangle (|10f(0)\rangle)$ $+12$ (100) $f(1)$) - 12 (110) $f(1)$)

$$
= \frac{1}{2} \left(\frac{|0\rangle|f(0)}{|1\rangle - |0\rangle|f(0)} - \frac{|0\rangle|f(0)}{|1\rangle - |1\rangle|f(0)} \right)
$$

$$
If f(0) = f(1), then f(0) = f(1)
$$
\n
$$
|Y_{2}\rangle = \frac{1}{2} (10 \times 14) (|f(0)\rangle - |f(0)\rangle)
$$
\n
$$
f(0) \in \{0, 1\}
$$
\n
$$
So, |f(0)\rangle - |f(0)\rangle = \{10\} - |10\rangle \quad if f(0) = 0
$$
\n
$$
So, |Y_{2}\rangle = (-1) \frac{f(0)}{2} (|0\rangle + |1\rangle) (|0\rangle - |1\rangle)
$$
\n
$$
So, |Y_{2}\rangle = (-1) \frac{f(0)}{2} (|0\rangle + |1\rangle) (|0\rangle - |1\rangle)
$$

$$
3601102(10)-1120
$$

$$
\frac{Tf}{f(0)} = f(1), \text{ then } f(1) = f(0)
$$
\n
$$
|Y_{2} \rangle = \frac{1}{2} \left(\frac{(0 \rangle - (1^{2}) \left(|f(0) \rangle - |f(0) \rangle \right)}{\left(|f(0) \rangle - |f(0) \rangle \right)} = (-1)^{60} \frac{1}{2} \left(\frac{(0 \rangle - (1^{2}) \left((0 \rangle - (1^{2}) \right) \right)}{\left(\frac{1}{2} \left(\frac{1}{2} \right) - |f(0) \rangle - |f(1) \rangle \right)}
$$

Then
$$
143>=(-1)^{\frac{101}{12}}
$$
 $11>10>10>-(12)$

To Sum up

$$
|4_{3}\rangle = \frac{50}{\sqrt{2}} |f(0) \oplus f(1)\rangle \left(|0\rangle - |1\rangle \right)
$$

By measuring the first qubit. $M_1 = 0 \Rightarrow f(s) = f(t)$
 $1 \Rightarrow f(s) = f(t)$

This phenomenon is "gaantum interference" By doing 1 operation, we can measure the result from : tus function values. This is different from conventional computer

Now let's state ^a mere generalized algorithm

Deutsch Jozsa Algorithm Deutsch Jossa Algorithm is designed to sobre Deutsch problem A lice randomly chooses a number x from 0.42 and sends it to Bob Bob sticks to either f , or f , randomly to κ and returns the result. f , is a function that always refurns a constant: $f(x) = C$ Iz is a function that for exactly half of the x it returns 1, and for another half refurns 0 . Question: How fast can Alice know whether Bob chooses f_1 or f_2 to process the x ?

1. Naive method. Alice tries at most $\frac{2^{n}}{2}$ ^t $1 = 2^{n-1}$ times to know whether it's f_1 or f_2 .

2. Probabilisfic method. Let S = i represents the event that trying i inputs and the results are the same. The uncorrainty P(f2) is $P(Y+1) = Y2$ $P(\hat{f}_{2})$ $S(z) = P(S=1 \hat{f}_{2}) P(\hat{f}_{2})$ $P(S=2 | \hat{f}_2) = (\frac{1}{2})^5 \times 2 = 2^{\frac{1}{5}} = 1/2$ e ther e or \mid $P(\hat{f}_{2}) = \frac{1}{2}$ $P(S=2) = P(S=2|\tilde{f}^{\prime\prime}_{k})\cdot P(\tilde{f}^{\prime\prime}_{k}) + P(S=2|\tilde{f}^{\prime\prime}_{l})\cdot P(\tilde{f}^{\prime\prime})$ $= 2^{1-S} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}$ = $\frac{1}{4}(1 + 2^{-5}) = \frac{5}{16}$ $so P(f_1)'(5-z) = \frac{y}{5/6} = \frac{y}{5}$ $P(\hat{f}_{1}^{\prime} | 5-s) = 2^{1-5.1/2}$ $\frac{1}{\sqrt{1-\frac{1}{2}+\frac{1}{2}+\frac{1}{2}}}$ $\frac{4}{\sqrt{5}+\frac{1}{2}}$

3. Quantum Algorithm. Alice will send Bob gaantum bits in superposition mode pace and get the result.

To interact with $f(x)$. Alice passes the $(x>+b$ another Hadamard gate π^{2n}
 π^{2n} π^{2n} π^{2n} π^{2n}
 π^{2n} π^{2}
 π^{2}
 π^{2}
 π^{2} where $|2\rangle = |3, 2, \ldots, 2n\rangle$ $|Y_{3}\rangle = \frac{1}{\sqrt{2^{n+1}}} \cdot \frac{1}{\sqrt{2^{n}}} \geq \frac{\sum (-1)^{n+2} (1+1)^{n}}{2} (1+1)^{n} (1+1)^{n} (1+1)^{n}$ = $\left(\frac{1}{2^n} \sum_{\pi} \sum_{\xi} (1)^{\pi^2 \xi + f(\pi)} | \xi \rangle \right)$ (0>+(1) The amplitude for state (0) $\frac{1}{2^n}$ is (when $z=0$)
 $\frac{1}{2^n} \sum_{\alpha} (1)^{\frac{x^{7.0}+(x)}{6}}$ (0) $\frac{\otimes n}{2^n}$ ---(X) If $f(x)$ is constant C, then
 $(f) = \frac{1}{2^n} \sum_{\alpha} (1)^{c} |0\rangle^{\otimes n} = (1) |0\rangle^{\otimes n}$ $either -1 or +1.$
So $|43\rangle = (1)^{C} (0)^{8n} +$ other state) $\frac{(0>1)^{4}}{2}$ $(A>1)$ Since a guantum state (A) must have amplitate 1, and we already final out a state that has amplitute 1, so "other sfate" = ϕ => if fix) is constant, IA> must be 10^{8n}

If $f(x)$ is balanced with half of the chance to be 0 and another half to be +1, then the amplitute for $|27 = |0\rangle^{\text{W1}}$ is $\frac{1}{2^n}$ $\frac{1}{2}$ (1) $\frac{1}{2}$ (0) $\frac{1}{2}$ $I = \frac{1}{2^{N}} \left(\sum_{(X \cdot f \cdot \hat{f}) = 1} (-1) \left(0 \right)^{N} + \sum_{(X \cdot f \cdot \hat{f}) \cdot \hat{f}} (-1)^{0} \left(0 \right)^{N} \right)$ <u>ပ</u> so, it's impossible to see to if f(x) is balanced, IA) must NUI be 10? ∞ \Rightarrow if Alice measures \ket{A} and see 10)⁰⁰ using constant function f $\overline{\partial}$. W $\overline{\partial}$ from $\overline{\partial}$